Caustic Brine and Chemicals Enter Drinking Water Aquifer at LCP Chemicals Superfund Site
April 2006

Glynn County was assured that no chemicals were entering our drinking water aquifer from the LCP Chemicals Superfund Site. Once horizontal monitoring wells were installed below the layer protecting the aquifer in 2002, sampling data told a different story. The 2005 sampling result show the trickle of toxic chemicals has increase to a hemorrhage and levels are skyrocketing.

Massive amounts of mercury, chromium, arsenic, and caustic brine were released into the ground at the LCP Chemicals Site. The pH (a measure of acidity to alkalinity on a scale of 1 to 14) of the caustic brine in the groundwater was a very alkaline pH 13. The brine was so strong it actually dissolved the soil; the confining layer protecting our drinking water aquifer is suspected of being dissolved also.

The Georgia Environmental Protection Division (GA-EPD) has pled with the EPA to take action for several years without success. Currently, the EPA is trying to get Honeywell to take action through legal means, but no action has been taken to stop the flow of chemicals.

The EPA noted, “Groundwater data collected from 2002 to 2004 documents the presence of groundwater contamination at the site which, if left unaddressed, may pose a significant threat to human health and the environment.” The EPA has also come to the same conclusion the GA-EPD came to several years ago. “Samples collected from horizontal wells show an increasing trend of heavy metal concentrations associated with the CBP (Caustic Brine Pool), in one or more of the horizontal monitoring wells, thus confirming that the cemented sandstone layer is not effective in preventing downward migration of contaminants.” The EPA does have the authority to take action to protect our drinking water. What is unknown is if the EPA has the will to take action. More than two years have gone by since the GA-EPD asked the EPA to take decisive action to stop the flow of toxic chemicals into Glynn County’s drinking water aquifer.